Page 78 - Azerbaijan State University of Economics
P. 78

THE JOURNAL OF ECONOMIC SCIENCES: THEORY AND PRACTICE, V.71, # 2, 2014, pp. 66-80


               moving average model ARIMA(2,0,1). Short-term inflation forecasting on these models show

               that yearly inflation rate for the next year will be single digit. Hence, forecasting using the above


               mentioned models predicts the price stability in the next year. This study assumes scientific and

               practical importance in determining the monetary policy in the economy.


                     References

               [1] Ezekiel N.N.Nortey,Benedict Mbeah-Baiden,Julis B.Dasah və Feliks O.Mettle, ―Modelling


                   rates of inflation in Ghana:An application of ARCH Models‖,Current Research Journal of

                   economic Theory 6(2):16-21, 2014


               [2]  S.O.Adams,  A.Awujola,A.I.Alumgudu,  ―Modelling  Nigeria`s  consumer  price  index  using

                   ARIMA  model‖,  International  Journal  of  Development  and  Economic  sustainability,


                   Vol.2,No.2,pp.37-47,June 2014

               [3] Ekpenyong, Emmanuel John, Omekara, C.O, Ekerete Michael Peter, ― Modelling inflation

                   rates  using  Periodogram  and  Fourier  Series  Analysis  Methods:  The  Nigerian


                   Case‖,International Journal of African and Asian studies, Vol.4, 2014.

               [4] Sani I.Duguwa and Sarah O. Alade, ―Short-term inflation forecasting Models for Nigeria‖,


                   CBN Journal of Applied Statistics Vol.4,No.2,December,2013.

               [5]  Damodar  N.  Gujarati.  (2004).  Basic  Econometrics,  4th  edition.  (Damodar  N.  Qujarati.


                   (2004), Ekonometrikanın əsasları, 4-cü nəşr, ―McGraw-Hill companies‖ 2004, 1003p.

               [6]  Robert  E.Lukas,  ―Econometric  policy  Evaluation:A  Critique,‖  in  Carnegie-Rochester


                   Conference Series, The Phillips Curve, North-Holland, Amsterdam, 1976, p.19-46.

               [7] Paulo Rotela Junior,Fernando  Luiz Riera Salomon,Edson de Oliveira Pamplona,  ―ARİMA: An


                   Applied times series forecasting model for the Bovespa Stock İndex‖,Applied Mahematics, 2014,

                   5,3383-3391.




                                                             78
   73   74   75   76   77   78   79   80   81   82   83